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We introduce a generalization of the well-known random sequential addition �RSA� process for hard spheres
in d-dimensional Euclidean space Rd. We show that all of the n-particle correlation functions of this nonequi-
librium model, in a certain limit called the “ghost” RSA packing, can be obtained analytically for all allowable
densities and in any dimension. This represents the first exactly solvable disordered sphere-packing model in
an arbitrary dimension. The fact that the maximal density ����=1/2d of the ghost RSA packing implies that
there may be disordered sphere packings in sufficiently high d whose density exceeds Minkowski’s lower
bound for Bravais lattices, the dominant asymptotic term of which is 1 /2d. Indeed, we report on a conjectural
lower bound on the density whose asymptotic behavior is controlled by 2−�0.778 65¼�d, thus providing the
putative exponential improvement on Minkowski’s 100-year-old bound. Our results suggest that the densest
packings in sufficiently high dimensions may be disordered rather than periodic, implying the existence of
disordered classical ground states for some continuous potentials.
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INTRODUCTION

A collection of congruent spheres in d-dimensional Eu-
clidean space Rd is called a sphere packing if no two spheres
overlap. The packing density or simply density � of a sphere
packing is the fraction of space Rd covered by the spheres.
Hard-sphere packings have been used to model a variety of
systems, including liquids �1�, amorphous and granular me-
dia �2�, and crystals �3�. Nonetheless, there is great interest in
understanding sphere packings in high dimensions in various
fields. For example, it is known that the optimal way of
sending digital signals over noisy channels correspond to the
densest sphere packing in a high-dimensional space �4�.
These “error-correcting” codes underlie a variety of systems
in digital communications and storage, including compact
disks, cell phones, and the Internet. Physicists have studied
hard-sphere packings in high dimensions to gain insight into
ground and glassy states of matter as well as phase behavior
in lower dimensions �5,6�. The determination of the densest
packings in arbitrary dimensions is a problem of long-
standing interest in discrete geometry �4�.

It is instructive to note that upper and lower bounds on the
maximal density

�max = sup
P�Rd

��P� �1�

exist in all dimensions �4�, where the supremum is taken
over all packings P in Rd. For example, Minkowski �7�
proved that the maximal density �max

L among all Bravais lat-
tice packings for d�2 satisfies the lower bound

�max
L �

��d�
2d−1 , �2�

where ��d�=�k=1
� k−d is the Riemann zeta function. One ob-

serves that for large values of d, the asymptotic behavior of
the nonconstructive Minkowski lower bound is controlled by
2−d. Interestingly, the density of a saturated packing of con-
gruent spheres in Rd for all d satisfies

� �
1

2d . �3�

A saturated packing of congruent spheres of unit diameter
and density � in Rd has the property that each point in space
lies within a unit distance from the center of some sphere.
Thus, a covering of the space is achieved if each center is
encompassed by a sphere of unit radius and the density of
this covering is 2d��1, which proves the so-called greedy
lower bound �3� Note that it has the same dominant expo-
nential term as �2�.

A statistically homogeneous �i.e., translationally invari-
ant� packing is completely configurationally characterized by
specifying all of the n-particle correlation functions. For such
packings in Rd, these correlation functions are defined so that
�ngn�r1 ,r2 ,¼ ,rn� is proportional to the probability density
for simultaneously finding n particles at locations
r1 ,r2 ,¼ ,rn within the system, where � is the number den-
sity. Thus, each gn approaches unity when all particle posi-
tions become widely separated within Rd, indicating no spa-
tial correlations. To date, an exact determination of all of the
n-particle correlation functions for a packing has only been
possible for d=1 in the special case of an equilibrium en-
semble of such particles �8�. Observe that in the limit d*Electronic address: torquato@electron.princeton.edu
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→�, it is known that the pressure of an equilibrium hard-
sphere fluid is exactly given by the low-density expansion up
to the second-virial level for a positive range of densities �5�,
which implies a simplified form for all of the correlation
functions �9�.

We present in Sec. II a generalization of the well-known
random sequential addition �RSA� process of hard particles
�2,10�. In a particular limit of this nonequilibrium model that
we call the “ghost” RSA process, we are able to obtain the gn
for all allowable densities exactly for any n and dimension d.
The key geometric quantity that determines gn is the union
volume of n overlapping exclusion spheres of radius equal to
the sphere diameter. We show that this construction of a dis-
ordered but unsaturated packing realizes the greedy lower
bound �3�. This implies that there may be disordered sphere
packings in sufficiently high d whose density exceeds
Minkowski’s lower bound �2�. Indeed, in Sec. III, we report
on a conjectural lower bound on the density whose
asymptotic behavior is controlled by 2�−0.778 65¼�d, thus pro-
viding the putative exponential improvement on Minkows-
ki’s 100-year-old bound. Our results lead to the counterintui-
tive possibility that optimal packings in sufficiently high
dimensions may be disordered and thus have implications for
our fundamental understanding of classical ground states of
matter.

GENERALIZED RANDOM SEQUENTIAL ADDITION
MODEL

We introduce a disordered sphere-packing model in Rd

that is a subset of the Poisson point process and is a gener-

alization of the standard random RSA process. The centers of
“test” spheres of the unit diameter arrive continually
throughout Rd during time t�0 according to a translationally
invariant Poisson process of density � per unit time, i.e., � is
the number of points per unit volume and time. Therefore,
the expected number of centers in a region of volume �
during time t is ��t and the probability that this region is
empty of centers is exp�−��t�. However, this Poisson distri-
bution of test spheres is not a packing because the spheres
can overlap. To create a packing from this point process, one
must remove test spheres such that no sphere center can lie
within a spherical region of the unit radius from any sphere
center. Without loss of generality, we will set �=1.

There is a variety of ways of achieving this “thinning”
process such that the subset of points correspond to a sphere
packing. One obvious rule is to retain a test sphere at time t
only if it does not overlap a sphere that was successfully
added to the packing at an earlier time. This criterion defines
the standard RSA process in Rd �2,10�, which generates a
homogeneous and isotropic sphere packing in Rd with a
time-dependent density ��t�. In the limit t→�, the RSA pro-
cess corresponds to a saturated packing with a maximal or
saturation density �s���� limt→���t�. In one dimension, the
RSA process is commonly known as the “car parking
problem,” which Reńyi showed has a saturation density
�s���=0.7476¼ �10�. For 2	d
�, an exact determination
of �s��� is not possible, but estimates for it have been
obtained via computer experiments for low dimensions
�2�.

Another thinning criterion retains a test sphere centered at
position r at time t if no other test sphere is within a unit
radial distance from r for the time interval �t prior to t,
where � is a positive constant in the interval �0,1�. This
packing is a subset of the RSA packing, and hence we refer
to it as the generalized RSA process. Note that when �=0,
the standard RSA process is recovered, and when �=1, a
model due to Matérn �11� is recovered �12�. The latter is
amenable to exact analysis and is the main focus of this
paper. For any 0
�	1, the generalized RSA process is al-
ways an unsaturated packing. Figure 1 illustrates the differ-
ences between the generalized RSA process at the two ex-
tremes of �=0 and �=1. In the remainder of this section, we
will focus on the case of �=1.

The time-dependent density ��t� in the case of the gener-
alized RSA process with �=1 is easily obtained. In this pack-
ing, a test sphere at time t is retained only if does not overlap
an existing sphere in the packing as well as any previously
rejected test sphere, which we will call “ghost” spheres. The
model itself will be referred to as the ghost RSA process. An
overlap cannot occur if a test sphere is outside a unit radius
of any successfully added sphere or ghost sphere. Because of
the underlying Poisson process, the probability that a trial
sphere is retained at time t is given by exp�−v1�1�t�, where
v1�1�=�d/2 /
�1+d /2� is the volume of a sphere of the unit
radius. Therefore, the expected time-dependent number den-
sity ��t� and packing density ��t�=��t�v1� 1

2
� at any time t are

given by

FIG. 1. The addition of four successfully added particles �in the
numerical order indicated� in the generalized RSA process at the
two extremes of �=0 �top panel� and �=1 �bottom panel�. In both
cases, the rejected particles have dashed boundaries. For the case
�=1, a test sphere cannot overlap a ghost sphere. Here 3� represents
the second attempt to add a third sphere.
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��t� = �
0

t

exp�− v1�1�t��dt� =
1 − exp�− v1�1�t�

v1�1�
,

�4�

��t� =
1 − exp�− v1�1�t�

2d .

In the limit t→�, we therefore have that

���� � lim
t→�

��t� =
1

v1�1�
, ���� � lim

t→�
��t� =

1

2d . �5�

Observe that the greedy lower bound �3� on the density is
achieved in the infinite-time limit for this sequential but un-
saturated packing, which was pointed out only recently �9�.
Although the limiting packing density ����=1/2d is far
from optimal in low dimensions, it is relatively large in high
dimensions, as discussed in our concluding remarks. Obvi-
ously, for any 0	�
1, the maximum �infinite-time� density
of the generalized RSA packing is bounded from below by
1/2d �i.e., the maximum density for �=1�. Henceforth, we
write v1�v1�1�.

The derivation of the expression of g2�r ; t� is actually a
simple extension of the aforementioned one for ��t�. Two test
spheres that arrive at times t1 and t2 and whose centers are
separated by a distance r can only be retained if no other test
spheres arrived before t1 and t2, respectively �see Fig. 2�.
Thus, the key geometrical object is the union volume v2�r� of
two spheres of unit radius whose centers are separated by a
distance r, which can be expressed in terms of the intersec-
tion volume v2

int�r� �13� between two such spheres via the
relation

v2�r� = 2v1 − v2
int�r� .

For r�2, there is no volume common to two such spheres
�v2

int�r�=0� and, therefore, g2�r ; t�=1, i.e., pair correlations
vanish. However, if 1	r	2, the two spheres have a com-
mon volume and

�2�t�g2�r;t� = �
0

t �
0

t

exp�− t1�v1 − v2
int�r�� − t2�v1 − v2

int�r��

− max�t1,t2�v2
int�r�	dt1dt2

= 2�
0

t

dt2exp�− t2v1��
0

t2

dt1

�exp�− t1�v1 − v2
int�r��	

=
2

v2�r� − v1

1 − e−tv1

v1
−

1 − e−tv2�r�

v2�r� � . �6�

In relation �6� the terms within the first three brackets are the
distinct volumes of the regions labeled 1, 2, and 12 in the top
panel of Fig. 2. Therefore, the time-dependent pair correla-
tion function for all r and t is given by

�2�t�g2�r;t� =
2��r − 1�
v2�r� − v1


1 − e−tv1

v1
−

1 − e−tv2�r�

v2�r� � , �7�

where ��x� is the unit step function, equal to zero for x
0
and unity for x�1. It is useful to note that at small times or,

equivalently, low densities, formula �4� yields the asymptotic
expansion ��t�= t−2d−1t2+O�t3�, which when inverted,
yields t=�+2d−1�2+O��3�. Substitution of this last result
into �7� gives

g2�r;�� = ��r − 1� + O��3� , �8�

which implies that g2�r ;�� tends to the unit step function
��r−1� as �→0 for any d.

In the limit t→�, we have from �7� that �2���g2�r ;��
=2��r−1� / �v1v2�r�� or, using �3�,

FIG. 2. Top panel: Relevant subvolumes for two overlapping
spheres of unit radius associated with the arrivals of two test
spheres. The labels refer to distinct, nonoverlapping regions. Bot-
tom panel: Relevant subvolumes for three overlapping spheres of
unit radius associated with the arrivals of three test spheres.

FIG. 3. Radial distribution function for the first five space di-
mensions at the maximum density �=1/2d for the generalized RSA
model with �=1, i.e., the “ghost RSA process.”
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g2�r;�� =
2��r − 1�

�2�r�
, �9�

where �2�r�=v2�r� /v1. The radial distribution function
g2�r ;�� is plotted in Fig. 3 for the first five space dimen-
sions. Because �2�r� is equal to 2 for r�2,g2�r ;��=1 for
r�2, i.e., spatial correlations vanish identically for all pair
distances except those in the small interval �0,2�. Even the
positive correlations exhibited for 1
r
2 are rather weak
and decrease exponentially fast with increasing dimension
�9�, i.e., g2�r ;�� tends to the unit step function as d→�, i.e.,
beyond the hard core �a constrained correlation�, spatial cor-
relations vanish.

Matérn originally gave an expression for the time-
dependent density ��t� and a formal expression �as opposed
to explicit expression for any d� for the time-dependent ra-
dial distribution function g2�r ; t� when �=1 using a com-
pletely different approach. However, he did not consider ob-

taining any of the higher-order correlation functions.
Let us now derive the time-dependent triplet correlation

function g3�r12,r13;��. Here the relevant geometrical object
is the union volume v3�r12,r13,r23� of three spheres of unit
radius whose centers are separated by the distances r12,r13,
and r23, which can be expressed in terms of the intersection
volume v3

int�r12,r13,r23� between three such spheres via the
relation

v3�r12,r13,r23� = 3v1 − v2
int�r12� − v2

int�r13� − v2
int�r23�

+ v3
int�r12,r13,r23� . �10�

Whenever there is no overlap between the three spheres, g3
=1, i.e., triplet correlations vanish. On the other hand, when-
ever the spheres overlap such that each pair distance is
greater than or equal to unity, there are triplet correlations. In
such situations, it is convenient to introduce the time-
dependent triplet function

F�r12,r13,r23;t1,t2,t3� = − t1�v1 − v2
int�r12� − v2

int�r13� + v3
int�r12,r13,r23�� − t2�v1 − v2

int�r12� − v2
int�r23� + v3

int�r12,r13,r23��

− t3�v1 − v2
int�r13� − v2

int�r23� + v3
int�r12,r13,r23�� − max�t1,t2��v2

int�r12� − v3
int�r12,r13,r23��

− max�t1,t3��v2
int�r13� − v3

int�r12,r13,r23�� − max�t2,t3��v2
int�r23� − v3

int�r12,r13,r23��

− max�t1,t2,t3�v3
int�r12,r13,r23� . �11�

The terms within the first three brackets are the volumes of the regions labeled 1, 2, and 3 in the bottom panel of Fig. 2. The
terms within the fourth through sixth brackets are the volumes labeled 12, 13, and 23 in the bottom panel of Fig. 2. Of course,
the region labeled 123 denotes the intersection volume of three spheres. The triplet correlation function at time t is given by

�3�t�g3�r12,r13,r23;t� = �
0

t �
0

t �
0

t

exp�− F�r12,r13,r23;t1,t2,t3��dt1dt2dt3

and therefore, at infinitely large times, we have, using �5�, �9�, and �13�, that

�3���g3�r12,r13,r23;��

= 2�
0

�

dt3 exp�− t3v1��
0

t3

dt2 exp�− t2�v1 − v2
int�r23��	�

0

t2

dt1 exp�− t1�v1 − v2
int�r12� − v2

int�r13� + v3
int�r12,r13,r23��	

+ 2�
0

�

dt1 exp�− t1v1��
0

t1

dt3 exp�− t3�v1 − v2
int�r13��	�

0

t3

dt2 exp�− t2�v1 − v2
int�r12� − v2

int�r23� + v3
int�r12,r13,r23��	

+ 2�
0

�

dt2 exp�− t2v1��
0

t2

dt1 exp�− t1�v1 − v2
int�r12��	�

0

t1

dt3 exp�− t3�v1 − v2
int�r13� − v2

int�r23� + v3
int�r12,r13,r23��	

=
2

v1v3�r12,r13,r23�

 1

v2�r12�
+

1

v2�r13�
+

1

v2�r23�
� . �12�

Combination of �5�, �9�, and �13� yields the following expression for the triplet correlation function for arbitrary positions at
infinitely large times:

g3�r12,r13;�� =
��r12 − 1���r13 − 1���r23 − 1�

�3�r12,r13,r23�
�g2�r12;�� + g2�r13;�� + g2�r23;��� , �13�
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where �3�r12,r13,r23�=v3�r12,r13,r23� /v1 and g3�r12,r13;��
�g3�r12,r13,r23;��.

A similar analysis reveals that the four-particle correlation
function in the limit t→� is given by

g4�r12,r13,r14;��

=
�i
j

4
��rij − 1�

�4�r12,r13,r14;��
�g3�r12,r13;�� + g3�r12,r14;��

+ g3�r13,r14;�� + g3�r23,r24;��� . �14�

By induction, the n-particle correlation function for arbitrary
positions at infinitely large times is given by

gn�r1,¼,rn;�� =

�
i
j

n

��rij − 1�

�n�r1,¼,rn� 
�
i=1

n

gn−1�Qi;��� , �15�

where the sum is over all the n distinguishable ways of
choosing n−1 positions from n positions r1 ,¼ ,rn and the
arguments of gn−1 are the associated n−1 positions, which
we denote by Qi. Moreover, �n�r12,r13,¼ ,r1n�
=vn�r12,r13,¼ ,r1n� /v1, where vn�r12,r13,¼ ,r1n� is the
union volume of n congruent spheres of a unit radius
whose centers are located at r1 ,¼ ,rn ,rij =r j −ri for all
1	 i
 j	n and rij = 
rij
.

It can be shown �9� that in the limit d→� and for
�=1/2d

gn�r12,¼,r1n;�� � �
i
j

n

g2�rij;�� , �16�

where g2�r ;�����r−1�. We see that unconstrained spatial
correlations vanish asymptotically. Specifically, �i� the high-
dimensional asymptotic behavior of g2 is the same as the
asymptotic behavior in the low-density limit for any d
�cf. �8��, i.e., unconstrained spatial correlations, which exist
for positive densities at fixed d, vanish asymptotically for
pair distances beyond the hard-core diameter in the high-
dimensional limit; and �ii� gn for n�3 asymptotically can be
inferred from a knowledge of only the pair correlation func-
tion g2 and number density �. These two asymptotic proper-
ties, which we have called the decorrelation principle �9�,
apply more generally to any disordered packing, as discussed
in Ref. �9�. Asymptotically, unconstrained correlations van-
ish �i.e., statistical independence is established� because we
know from the Kabatiansky and Levenshtein asymptotic up-
per bound on the maximal density �max of any sphere pack-
ing that the density must go to zero at least as fast as 2−0.5990d

for large d �14�.

DISCUSSION

The fact that the maximal density ����=1/2d of the ghost
RSA packing coincides with the greedy lower bound �3�
strongly suggests that there are saturated disordered packings
that have larger densities, i.e., the greedy lower bound is a
weak bound for saturated packings �15�. This implies that

there may be disordered sphere packings in sufficiently high
d whose density exceeds Minkowski’s lower bound �2� for
Bravais lattices, the dominant asymptotic term of which is
1 /2d. Our results already give insight into this fascinating
possibility. For example, consider the so-called checkerboard
lattice Dd in d dimensions �4�, which is a d-dimensional
generalization of the optimal �densest� face-centered cubic
lattice in three dimensions, and thought to be the
optimal packing for d=4 and 5. Its packing density
�=�d/2 / �
�1+d /2�2�d+2�/2� exponentially decreases with in-
creasing d �because it quickly becomes unsaturated� and
falls below the ghost-RSA-process value of 1 /2d for the first
time at d=28 �16�. The ratio of densities of the ghost
RSA process to the checkerboard at d=100 is given by
�ghost /�checker�7.5�1025. Although both packings are un-
saturated in such high dimensions, the fact that g2�r� for the
ghost RSA process is effectively uniform �unity� for all
r�1 but for the checkerboard lattice involves Dirac � func-
tions of weak strength at widely spaced discrete distances
explains why the former is enormously denser than the latter.

Over the last century, many extensions and generaliza-
tions of Minkowski’s lower bound �2� have been obtained
�4�, but none of these investigations have been able to im-
prove upon the dominant exponential term 2−d. In another
work �9�, we will present comprehensive rigorous evidence
that this exponential improvement may be provided by con-
sidering specific disordered sphere packings. Here we simply
sketch the procedure leading to this putative improvement
over Minkowski’s lower bound. The basic ideas underlying
our recent approach to the derivation of lower bounds on
�max were actually described in our earlier work �17� in
which we studied so-called g2-invariant processes. A
g2-invariant process is one in which a given non-negative
pair correlation g2�r� function remains invariant for all r
over the range of densities

0 	 � 	 �*. �17�

The terminal density �* is the maximum achievable density
for the g2-invariant process subject to satisfaction of certain
necessary conditions on the pair correlation. In particular, we
considered those “test” g2�r�’s that are distributions on
Rd depending only on the radial distance r. For any test
g2�r�, we want to maximize the corresponding density � sat-
isfying the following three conditions:

g2�r� � 0 for all r, �i�

g2�r� = 0 for r 
 1, �ii�

S�k� = 1 + ��2��d/2�
0

�

rd−1h�r�
J�d/2�−1�kr�

�kr��d/2�−1 dr � 0 for all k ,

�iii�
where h�r�=g2�r�−1 is the total correlation function. Condi-
tion �i� is a trivial consequence of the fact that g2 is a prob-
ability density function. Condition �ii� is just the hard-core
constraint for spheres of unit diameter. Condition �iii� states
that the structure factor S�k� in d dimensions must be non-
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negative for all k. When there exist sphere packings with g2
satisfying conditions �i�–�iii� for � in the interval �0,�*�,
then we have the lower bound on the maximal density given
by

�max � �*. �18�

It is rather remarkable that the optimization problem de-
fined above is identical to one formulated by Cohn �18�.
Specifically, it is the dual of the primal infinite-dimensional
linear program that Cohn employed with Elkies �19� to ob-
tain upper bounds on the maximal packing density. Thus,
even if there does not exist a sphere packing with g2 satisfy-
ing conditions �i�–�iii�, the terminal density �* can never
exceed the Cohn-Elkies upper bound and, more generally,
our formulation has implications for upper bounds on �max.

In addition to the structure factor condition, there are gen-
erally many other conditions that a pair correlation function
corresponding to a point process must obey �20�. One such
additional necessary condition, obtained by Yamada �21�, is
concerned with the variance �2����Š�N���2−ŠN���‹�2

‹, in
the number N��� of particle centers contained within a re-
gion or “window” ��Rd:

�2��� = �
�

1 + ��
�

h�r�dr� � ��1 − �� , �19�

where � is the fractional part of the expected number of
points �
�
 contained in the window. This is a consequence
of the fact that the number of particles in any window must
be an integer.

In Ref. �17�, a five-parameter test family of g2’s had been
considered, which incorporated the known features of core
exclusion, contact pairs, and damped oscillatory short-range
order beyond contact that are features intended to describe
disordered jammed sphere packings for d=3. However, be-
cause of the functional complexity of this test g2, the termi-
nal density could only be determined numerically. The gen-
eral optimization procedure outlined above was employed in
Ref. �9� to obtain analytical estimates of the terminal density
in high dimensions that together with the following conjec-
ture provide the putative exponential improvement on
Minkowski’s lower bound on �max:

Conjecture 1. A hard-core non-negative tempered distri-
bution g2�r� is a pair correlation function of a translationally
invariant disordered sphere packing in Rd at number density
� for sufficiently large d if and only if S�k��0. The maxi-
mum achievable density is the terminal density �*.

In other words, for a given g2�r� that meets the conditions
�i�–�iii�, at or above a critical dimension dc, packings exist
with such a g2. A disordered packing in Rd is defined in Ref.
�9� to be one in which the pair correlation function g2�r�
decays to its long range value of unity faster than 
r
−d+� for
some ��0. Employing the aforementioned optimization pro-
cedure with a certain test function g2 and Conjecture 1, we
obtain in what follows provisional lower bounds that yield
the long-sought asymptotic exponential improvement on
Minkowski’s bound. An important feature of any dense pack-
ing is that the particles form contacts with one another. Ex-
perience with disordered jammed packings in low dimen-

sions reveals that the contact or kissing number as well as the
density can be substantially increased if there is a low prob-
ability of finding noncontacting particles from a typical par-
ticle at radial distances just larger than the nearest-neighbor
distance. It is desired to idealize this small-distance negative
correlation �relative to the uncorrelated value of unity� in
such a way that it is amenable to exact asymptotic analysis.
Accordingly, a test radial distribution function was consid-
ered in Ref. �9� in which there is a gap between the location
of a unit step function and the � function at finite d, i.e.,

g2�r� = ��r − �� +
Z

s1�1��
��r − 1� , �20�

where s�r� is the surface area of a d-dimensional sphere of
radius r and Z is a parameter, which is the average contact or
kissing number, and unity is the sphere diameter. The expres-
sion contains two adjustable parameters, ��1 and Z, which
must obviously be constrained to be non-negative.

Before reporting the main results of this optimization, it is
instructive to examine the test function �20� for two special
cases: �1� one in which �=1 and Z=0 and �2� the other in
which �=1 and Z�0 �which were considered in Ref. �17��.
In the first special instance, there are no parameters to be
optimized here, and the terminal density �* is given by
�*=1/2d. It is simple to show that the Yamada condition
�19� is satisfied in any dimension for 0	�	2−d. We already
established in the previous section that there exist sphere
packings that asymptotically have radial distribution func-
tions given by the simple unit step function for �	2−d.
Nonetheless, invoking Conjecture 1 and the obtained termi-
nal density, implies the asymptotic lower bound on the maxi-
mal density is given by

�max �
1

2d , �21�

which provides an alternate derivation of the elementary
bound �3�. Using numerical simulations with a finite but
large number of spheres on the torus, we have been able to
construct particle configurations in which the radial distribu-
tion function is given by the test function �20� with �=1 and
Z=0 in one, two, and three dimensions for densities up to the
terminal density �22,23�. The existence of such a discrete
approximation to this test g2 is suggestive that the standard
non-negativity conditions may be sufficient to establish
existence in this case for densities up to �*. In the second
special case ��=1 and Z�0� and under the constraint that
the minimum of S�k� occurs at k=0 then we have the exact
results �*= �d+2� /2d+1 and Z*=d /2 where Z* is the opti-
mized average kissing number. The Yamada condition �19� is
violated here only for d=1 and becomes less restrictive as
the dimension increases from d=2. Interestingly, we have
also shown via numerical simulations that there exist sphere
packings possessing radial distribution functions given by
this test function in two and three dimensions for densities
up to the terminal density �23�. This is suggestive that Con-
jecture 1 for this test function may in fact be stronger than is
required. In the high-dimensional limit, invoking Conjecture
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1 and the obtained terminal density, yields the conjectural
lower bound

�max �
d + 2

2d+1 . �22�

This lower bound provides the same type of linear improve-
ment over Minkowski’s lower bound as does Ball’s rigorous
lower bound �24� obtained using a completely different ap-
proach.

Now let us consider the problem when both � and Z in
�20� must be optimized. The presence of a gap between the
unit step function and � function will indeed lead asymptoti-
cally to substantially higher terminal densities. For suffi-
ciently small d �d	200�, the optimization procedure is car-
ried out numerically �9�. The Yamada condition �19� is
violated only for d=1 for the test function �20� for the ter-
minal density �* and associated optimized parameters �* and
Z*= �2�*�*�d−1. One can again verify directly that the
Yamada condition becomes less restrictive as the dimension
increases from d=2. However, although the test function
�20� for d=2 with optimized parameters �*=0.74803,�*
=1.2946, and Z*=4.0148 satisfies the Yamada condition, it
cannot correspond to a sphere packing because it violates
local geometric constraints specified by �* and Z* �9�. To our
knowledge, this is the first example of a test radial distribu-
tion function that satisfies the two standard non-negativity
conditions �i� and �iii� and the Yamada condition �19�, but
cannot correspond to a point process. Thus, there is at least
one previously unarticulated necessary condition that has
been violated in the low dimension d=2. As is the case with
the Yamada condition �19�, this additional necessary condi-
tion appears to lose relevance in low dimensions because we
have shown that there is no analogous local geometric con-
straint violation for d�3. For d	56, the terminal density
lies below the density of the densest known packing �a Bra-
vais lattice� �4�. However, for d�56,�* can be larger than
the density of the densest known arrangements, which are
ordered. Our numerical results for d between 3 and 200,
reveal exponential improvement of the terminal density �*
over the one for the gapless case, where �*= �d+2� /2d+1.

For large d, an exact �but nontrivial� asymptotic analysis
can be performed �9�, yielding the optimal terminal density.

This result in conjunction with Conjecture 1 yields the con-
jectural asymptotic lower bound

�* �
3.276 100 896d1/6

2�3−log2�e��d/2 =
3.276 100 896d1/6

2�0.778 652 479 5. . .�d . �23�

This putatively provides the long-sought exponential im-
provement on Minkowski’s lower bound. We call this is a
conjectural lower bound because it relies on Conjecture 1
being true, which a number of results support. First, the
decorrelation principle states that unconstrained correlations
in disordered sphere packings vanish asymptotically in high
dimensions and that the gn for any n�3 can be inferred
entirely from a knowledge of � and g2. Second, the necessary
Yamada condition appears to only have relevance in very
low dimensions. Third, we have demonstrated that other new
necessary conditions also seem to be germane only in very
low dimensions. Fourth, we recover the form of known rig-
orous bounds �cf. �21� and �22�� in special cases of the test
radial distributions function �20� when we invoke Conjecture
1. Finally, in these two instances, configurations of disor-
dered sphere packings on the torus have been numerically
constructed with such g2 in low dimensions for densities up
to the terminal density �22,23�.

A byproduct of the bound �23� is the conjectural
asymptotic lower bound on the maximal kissing number �9�

Zmax � Z* � 40.24 850 787d1/62�log2�e�−1�d/2

= 40.24 850 787d1/62�0.221 347 520 5. . .�d. �24�

This result is superior to the best known asymptotic lower
bound on the maximal kissing number of 20.2075,¼,d �25�.

The work described above suggests that the densest pack-
ings in sufficiently high dimensions may be disordered rather
than periodic, implying the existence of disordered classical
ground states for some continuous potentials. In fact, there is
no fundamental reason why disordered ground states are pro-
hibited in low dimensions �26�. A case in point are the “pin-
wheel” tilings of the plane, which possess both statistical
translational and rotational invariance �27�.
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